The Importance of Return-to-Academic Plans and Active Rehabilitation for Mental Health in Concussion Management

Eric E. Hall, Ph.D., FACSM

Elon University

Professor of Exercise Science; Faculty Athletics Representative Co-Director of Elon BrainCARE Research Institute

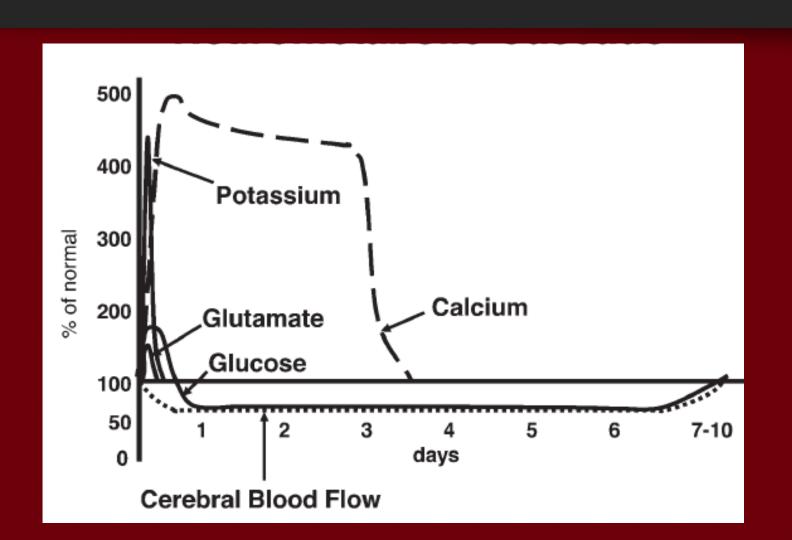
2019 SUNY Cortland Spring Sports Medicine Symposium

Elon University

Plan for the talk

- Concussion Management
 - What happens when an athlete is injured?
 - Rest Is it important?
 - Active Rehabilitation what are ways to improve recovery?
 - Return to Learn importance for student-athletes
 - Role of Social Support
- Long-term implications on mental health
- Questions??

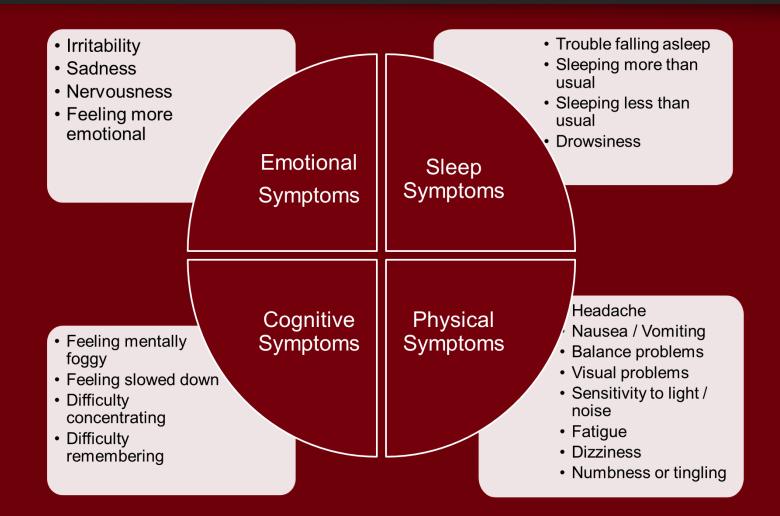
Case Study - When concussion management goes bad??



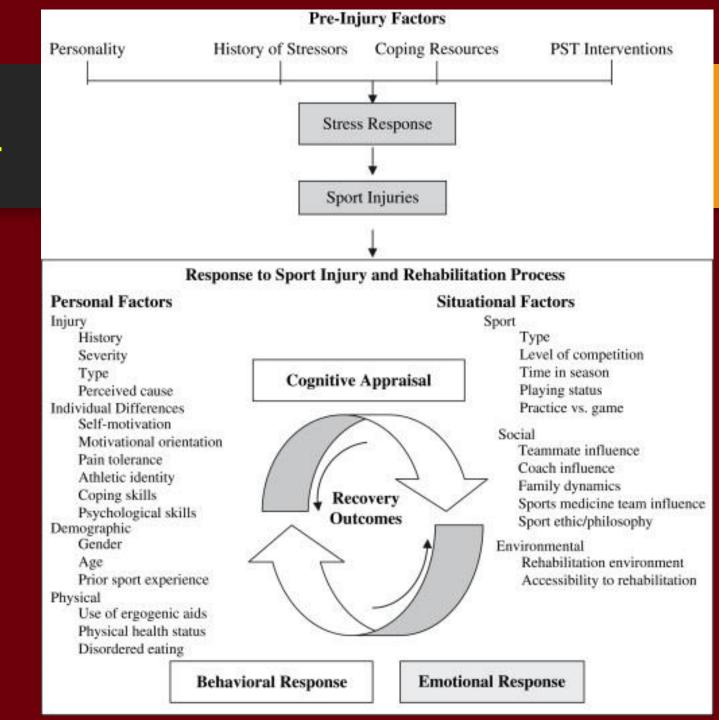
What may have been responsible for this result?

Father said combination of factors:

- 1. Personality intelligent, hardworking, unable to say no, limited ability to express emotions; pride, self-worth and identity tied to success; unwilling to seek and accept help
- 2.Overtraining + additional stresses training hard for world championships; attending school Stanford (complex mathematics and computer programming); previous injury (bone fracture and concussion)
- 3. Concussion may have been more severe, mental deterioration, headaches, apathy
- 4. Additional hypoxic brain and cardiac damage from first suicide attempt


Neurometabolic Cascade (Giza and Hvoda, 2013)

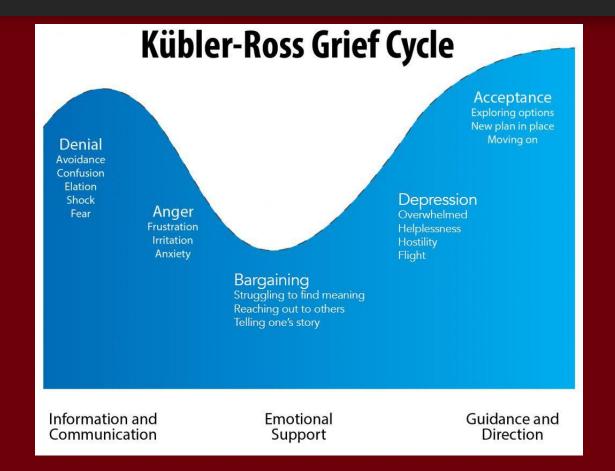
Concussion: A Multifaceted Condition

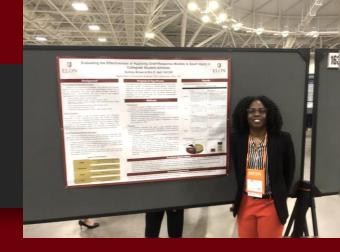


Common Concussion Symptoms and Behaviors

Wiese-Bjornstal's Model

- Integrated Model of Response to Sport Injury was first introduced in 1998
- This expanded Andersen and Williams (1988) stress and injury model




Response to Injury

This suggests that every concussion is different and treatment might need to be tailored to the individual

Emotional Response to Injury

Brown & Hall (2018)

- 15 collegiate student-athletes
- Diagnosis
 - Upset and Frustrated
- Surgery
 - Nervous
- Rehabilitation
 - Frustration
- Return to Play
 - Happiness
 - Frustration

Identity is Important – Strong identity may predispose to depression

Moreau, Langdon and Buckley (2014)

Lived experience of in-season concussion amongst Division I SAs

Five Major Themes:

- 1. Symptoms and emotional response
 - Headaches, irritability, anxiety
- 2. Experiences of concussion testing
 - (difficulty anxiety provoking)
- 3. Fear of failing to meet teammate expectations
- 4. Support from friends/teammates and family
- 5. Effect on school
 - Did not have academic accommodations

Lets talk about ... Concussion Management

What can we do?

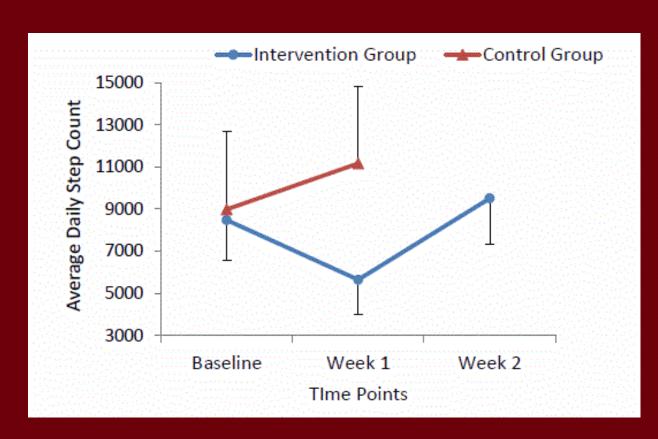
- Rest
- Active Rehab
- Return-to-Learn

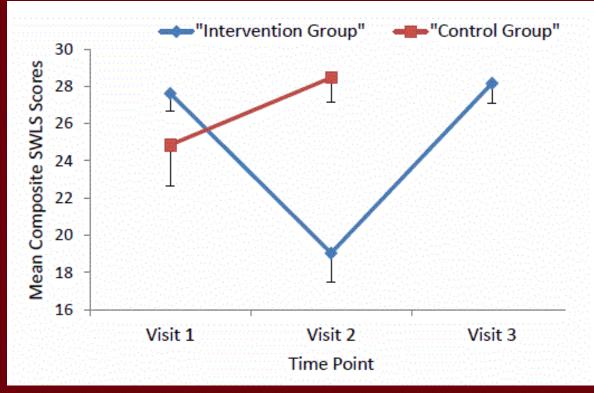
Use of Rest in Concussion Management

Complete physical and cognitive rest were cornerstones of concussion management and are a common intervention

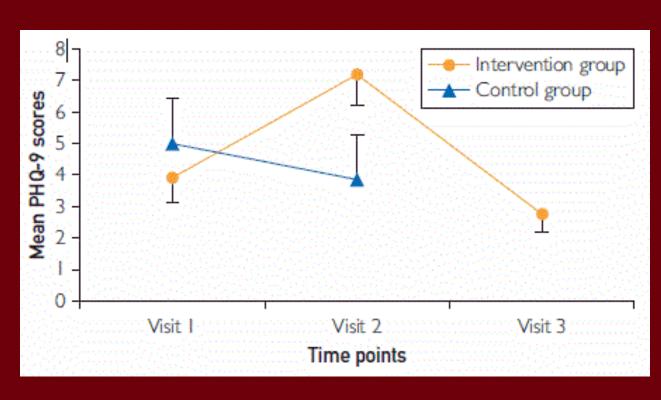
(Zurich 2012; McCrory 2013)

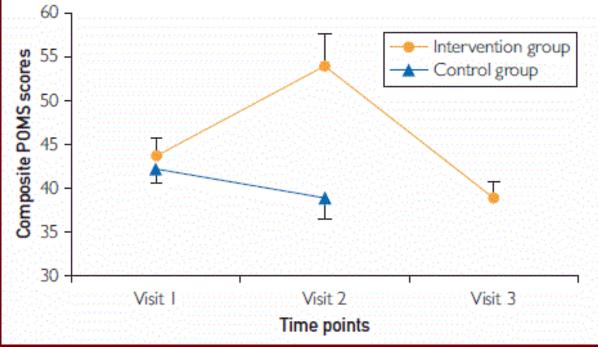
Rationale:


- Rest may ease discomfort by mitigating symptoms
- Promote recovery by minimizing energy demands of brain after a concussion
- Prevent a second head injury


Detriments of prescribed "rest"

Edwards and Loprinzi (2016; 2017)


- 39 participants who were confirmed to be active based on self-report and accelerometer data
- Randomly assigned to one of two groups:
 - Sedentary behavior intervention group (n = 26)
 - Asked to eliminate all exercise and minimize steps to 5000 or less per day for 1 week
 - Control group (n = 13)
 - Asked to resume normal physical activities for 1 week


Edwards and Loprinzi (2016; 2017)

Edwards and Loprinzi (2016; 2017)

Use of Rest in Concussion Management

"There is currently insufficient evidence that prescribing complete rest achieves these objectives. After a brief period of rest during the acute phase (24-48 hours) after injury, patients can be encouraged to become gradually and progressively more active while staying below their cognitive and physical symptom-exacerbation thresholds (i.e., activity level should not bring on or worsen their symptoms). It is reasonable for athletes to avoid vigorous exertion while they are recovering. The exact amount and duration of rest is not yet well defined in the literature and requires further study."

(McCrory et al., 2017; Schneider et al., 2017)

Definition:
What is
rest?

Dose: How much do I take?

Duration: How long?

Discontinue: When to stop?

Potential Activities for Post-concussion Interventions

Active management category	Proposed Management Considerations
Symptom management	Guided activity based on symptoms Manual therapy for head/neck pain
Cognitive activity	Short digit spans or Word memory tasks Cognitive rehabilitation program
Motor/balance activity	General, progressive balance training
Exercise/controlled exertion	Buffalo Concussion Treadmill Test Graduated return progression
Divided attention activity	Balance activities with cognitive tasks Gait tasks with cognitive tasks
Visual activity	Convergence/Divergence Accommodation
Vestibular activity	Dix-Hallpike Gaze stabilization
Pharmacological/Supplements	Omega-3 fatty acids Melatonin

Adapted from Register-Mihalik & Vander Vegt (2017) In Hall & Ketcham, Concussions in Athletics: Assessment, Management and Emerging Issues

Gold Standard Current Return to Sport Strategy

Symptom Limited Activity

Light Aerobic Activity

Sport Specific Exercise

Non-Contact Training

Full Contact Training

Journal of Athletic Training 2014;49(2):245-265 doi: 10.4085/1062-6050-49.1.07 © by the National Athletic Trainers' Association, Inc www.natajournals.org

National Athletic Trainers' **Association Position Statement: Management of Sport** Concussion

Steven P. Broglio, PhD, ATC*; Robert C. Cantu, MD†; Gerard A. Gioia, PhD‡; Kevin M. Guskiewicz, PhD, ATC, FNATA, FACSM§; Jeffrey Kutcher, MD*: Michael Palm, MBA. ATCII; Tamara C. Valovich McLeod, PhD, ATC, **FNATA**¶

*University of Michigan, Ann Arbor; †Department of Surgery, Emerson Hospital, Concord, MA: ±Division of Pediatric Neuropsychology, Children's National Medical Center, Washington, DC; §Department of Exercise and Sport Science, University of North Carolina, Chapel Hill; IIAthletico Physical Therapy, Oak Brook, IL; ¶Athletic Training Program, A.T. Still University, Mesa, AZ

Objective: To provide athletic trainers, physicians, and other health care professionals with best-practice guidelines for management provided here are based on the most current

Consensus statement

Recommendations: The recommendations for concussion

Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016 FREE

Paul McCrory¹, Willem Meeuwisse², Jiří Dvorak^{3, 4}, Mark Aubry⁵, Julian Bailes⁶, Steven Broglio⁷, Robert C Cantu⁸, David Cassidy⁹, Ruben J Echemendia 10, 11, Rudy J Castellani 12, Gavin A Davis 13, 14, Richard Ellenbogen 15, Carolyn Emery 16, Lars Engebretsen 17, Nina Feddermann-Demont^{18, 19}, Christopher C Giza^{20, 21}, Kevin M Guskiewicz²², Stanley Herring²³, Grant L Iverson²⁴, Karen M Johnston²⁵, James Kissick²⁶, Jeffrey Kutcher²⁷, John J Leddy²⁸, David Maddocks²⁹, Michael Makdissi^{30, 31}, Geoff Manley³², Michael McCrea³³, William P Meehan^{34, 35}, Sinii Nagahiro³⁶, Ion Patricios^{37, 38}, Margot Putukian³⁹, Kathryn I Schneider⁴⁰, Allen Sills^{41, 42}, Charles H Tator^{43, 44}, Michael Turner⁴⁵, Pieter E Vos⁴⁶

Return to Sport / Full Contact Return to Play

position statement

Specific Aims - Active Rehab Project

Specific Aim 1

Specific Aim 2

Compare the effects of a multidimensional rehabilitation protocol versus enhanced graded exertion on clinical recovery, return to play, and patient outcomes after SRC.

Demonstrate the safety and feasibility of active intervention protocols when introduced during the sub-acute recovery period after SRC, as part of an multidimensional rehabilitation protocol

*Enhanced graded exertion will encompass the Berlin RTP guidelines, including guided activity in Stage 1 and more sport specific concepts throughout the return to play process, consistent with common current day practice.

IN SUMMARY

(see study overview document in packet)

- We are comparing two treatments for sports-related concussion
 - We don't know which one is better
- They are both safe, based on current clinical and scientific knowledge

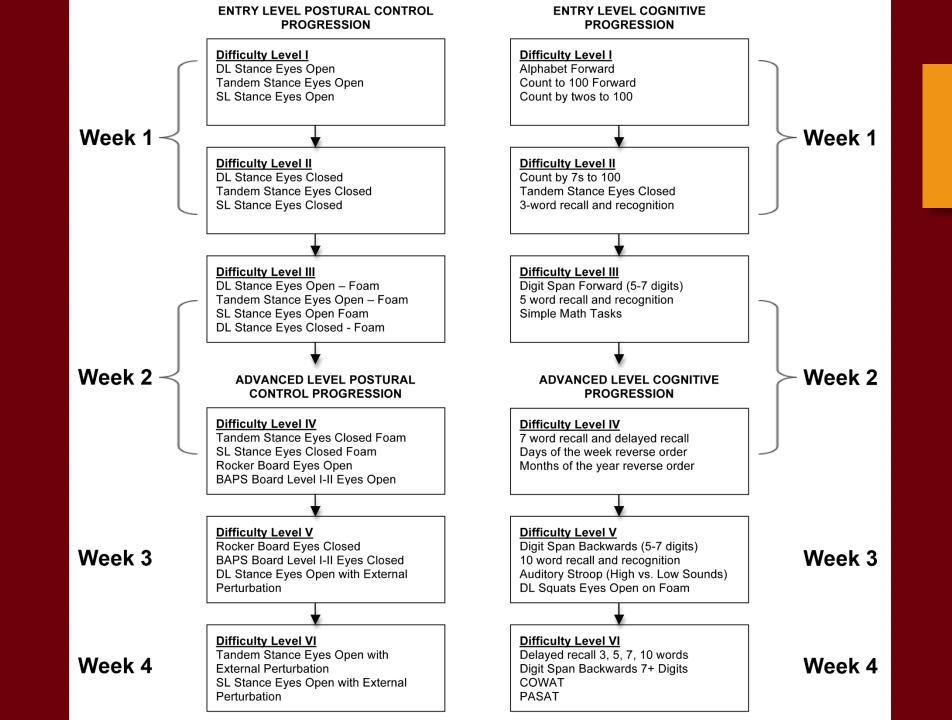
Frontier for the Graduated RTP: Can we use rehabilitation in concussion management?

Contents lists available at ScienceDirect

Journal of Science and Medicine in Sport

journal homepage: www.elsevier.com/locate/jsams

Outcomes, utility, and feasibility of single task and dual task intervention programs: Preliminary implications for post-concussion rehabilitation


Joseph M. Ingriselli^a, Johna K. Register-Mihalik^{a,b,*}, Julianne D. Schmidt^c, Jason P. Mihalik^{a,d}, Benjamin M. Goerger^e, Kevin M. Guskiewicz^{a,d}

- ^a Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- b Clinical Research Unit, Emergency Services Institute, WakeMed Health and Hospitals, Raleigh, NC, United States
- ^c Department of Kinesiology, The University of Georgia, Athens, GA, United States
- d Curriculum in Human Movement Science, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- e Sports Medicine Research Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, GA, United States
- Motor and cognitive tasks
- Low-level to more intense progressions
- Fun, engaging, move to sport-specific

Pilot work

Improvements in balance and coordination after 4 weeks

Dual-Task Weekly Exercise Examples

- Week 1
 - Tande, Stance EC while Counting by 7s to 100
- Week 2
 - SL Stance EC on Foam with Digit Span Forward
 - Wii Fit Running with Digit Span Forward
- Week 3
 - BAPS Board with Ball toss and 10-Word Recall
- Week 4
 - Rocker Board EO with Ball Toss and PASAT (2")

Use of Exercise in Concussion

Exercise is known to have numerous benefits

- Improve cardiovascular function (BP, HRV)
- Improve cognitive function
- Improve mood, anxiety and affect
- Improve sleep quality
- These are many of the symptoms influenced by concussion, so exercise might help in concussion recovery

Early PA and Concussion Symptoms

Grool et al. (2016)

- Prospective, multicenter cohort study in Canada
- 3063 children and adolescents (5-18 years)
- Assessed physical activity and post concussion symptoms at 7 days and 28 days post injury
- Almost 70% participated in some level of early physical activity
- Those who had early participation in PA had lower risk of persistent post concussive symptoms
 - 24.6% vs. 43.5%

Physical Exercise After a Concussion

Lal et al. (2018)

- Conducted a systematic review and meta-analysis
- Exercise group significantly different than control on:
 - Post-Concussion Symptom Score
 - Percentage of patients with symptoms
 - Days off work
 - Improved reaction time
- No differences BESS or other neurocognitive components

Most Recent Acute / Sub-Acute Evidence

Original Investigation

February 4, 2019

Early Subthreshold Aerobic Exercise for Sport-Related Concussion

A Randomized Clinical Trial

John J. Leddy, MD¹; Mohammad N. Haider, MD¹,²; Michael J. Ellis, MD³,4,5; et al

Author Affiliations

JAMA Pediatr. Published online February 4, 2019. doi:10.1001/jamapediatrics.2018.4397

- 103 concussed participations (~46% female)
- Randomly signed aerobic exercise vs. stretching treatment
 - Supervised aerobic exercise ~20 min sessions daily at a prescribed heart rate on a treadmill or bike
 - No Ix administered prior to 48 hours postinjury
- Mean time to visit 4.8/4.9 days from injury
- Aerobic exercise recovered in median 13 (IQR 10-18.5 days)
- Stretching recovered in median 17 (IQR 13-23 days)

Exercise Intensity

How can we determine suitable exercise intensity?

- Stress testing via graded exercise has been used for long time by exercise physiologists
- Most commonly it is used to evaluate cardiac function and used in cardiac rehabilitation
- Can be used to determine how well body handles increased demands of physical activity
- Key is to make sure the person is aware of important symptoms to limit test or exercise bout

Buffalo Concussion Treadmill Test

- Modification of the Balke Protocol
 - Starting speed is 3.6 mph at 0% incline
 - Can be altered to account for height or activity level
 - 0% grade for 2 minutes
 - Increase 1% grade every minute after
 - Assess HR, BP (if possible), RPE and Symptoms every 2 minutes

Buffalo Concussion Treadmill Test

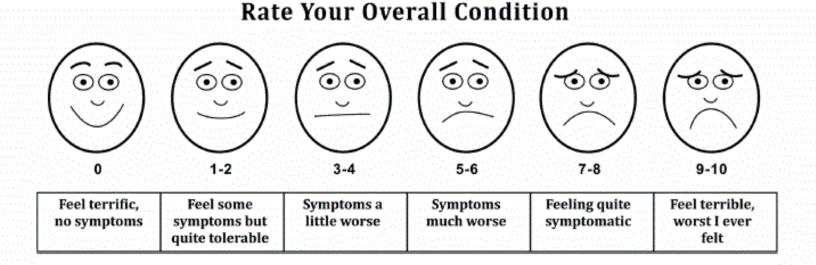


Figure 1: Visual Analog Scale for assessment of overall symptom level before and during the Buffalo Concussion Treadmill Test.

Terminate test if ≥ 3 change in symptoms from rest or exhaustion (19 or 20 on RPE scale) If report ≥ 7 symptoms at rest before test, do not do the test

Return to Learn Policy - Elon

- When a concussion happens on campus, the person who diagnoses sends a note to academic advising to send out notice about missed classes
- Academic advising sends an e-mail to faculty members that student has had a concussion
 - Attaches FAQ we created about concussions
- Academic advisor for athletics will provide a bit more support throughout
- If concussion recovery is prolonged (>2 weeks) disability support services will often be brought in

Return to Academics (Hall et al., 2015)

Stage	Activity	Objective		
No activity	Complete cognitive rest	Recovery		
Gradual	Slowly add cognitive	Gradual increase cognitive activity		
reintroduction of	activities for short periods	at sub-symptom threshold levels;		
cognitive activity	of time and gradually	increase length of time that can be		
	increase time	tolerated		
Gradual	Begin introduction of class	Increase cognitive load at sub-		
reintegration into	attendance; slowly build	symptom threshold; Decrease		
academics	up attendance to full days	accommodations needed		
Resumption of full	Catch up with essential	Full return to academics;		
cognitive workload	work; No restrictions	commence Return-to-Play protocol		

Accommodations by symptoms

Signs/Symptoms	Potential academic Implications	Accommodations	
Headache	Difficulty concentrating	Focus for short periods in quiet and naturally lit environments	
	Often triggered by florescent lighting, loud noises, prolonged focusing		
Dizzy; lightheaded	Vestibular difficulties, difficult standing or changing levels (sit-to- stand)	Allow transition time for engaged activities; allow student to put head down if symptoms worsen	
Visual symptoms (light sensitivity, blurred or double vision)	Difficult concentrating on visual information (PowerPoint, videos, reading, computer, etc.)	Give materials presented in class to student so they can work on it in spurts; provide a note-taker	
Noise sensitivity	Loud activities in class (ie, group activities)	Allow to move to quieter location with group or do in a smaller group	
Concentration and memory problems	Difficult to gather and retain new information, recall previously learned material, take tests, focusing in class	Provide new material in different formats for student to learn in small spurts outside of class (notes, lecture materials); provide test and assignment accommodations (delayed, more time)	
Sleep disturbances	Difficulty falling asleep, difficulty waking up	Allow student to attend a later section if it is the same material	

Adapted from Halstead et al. Adaptations are themselves works protected by copyright. So in order to publish this adaptation, authorization must be obtained both from the owner of the copyright in the original work and from the owner of copyright in the translation or adaptation.

Key personnel in return-to-academics

Professional	Roles
Student-Athlete	Report symptoms of concussion at all stages of injury and recovery Follow cognitive/physical rest requirements Communicate with advisors and instructors and come up with a realistic return-to-academics plan
Team Physician	Responsible for health care of student-athlete Design and implement appropriate baseline concussion testing program Determine if student-athlete has a concussion and development of a treatment plan for student-athlete Make ultimate determination about return-to-play and return-to academics
Sports Medicine Staff/ Athletic Trainer	Perform preseason baseline assessments on student-athletes Assessment of possible concussions during practice and competitions Monitor symptoms and performance on assessments to determine recovery progress Lead graduated return-to-play protocol

Key personnel in return-to-academics

Professional	Roles
Neuropsychologist**	Perform neuropsychological assessments following concussions Make recommendations about treatment and return-to-academics
Academic support/ Disability services	Inform faculty about class absences when it is discovered a student-athlete has suffered a concussion Keep faculty informed about progress of student Educate faculty about implications of concussion on student Help student-athlete
Coach	Be supportive and understand the concussion management protocol Assist in the implementation of treatment recommendations to the student-athlete

Key personnel in return-to-academics

Professional	Roles
Athletic Director	Be supportive and understand the concussion management protocol Encourage education of athletics department about concussions and their consequences
Provost, chancellor, CEO	Be supportive and understand the concussion management protocol Encourage education of faculty and staff at institution about concussions and their consequences

Importance of Social Support

Social Support - Injury

- Brown and Hall (2018)
 - Family (parents) are primary source, especially during recovery
 - Teammates
 - Significant others
 - 75% wished received more support
 - Primarily from coaches
 - Teammates
 - Most support happened during diagnosis and during surgery

Social Support - Concussion

Heaton, Hall, Ahmed, Rees and Ketcham (2018)

- Interviewed Varsity (n= 6) and Club Athletes (n = 7) and Dancers (n = 3)
- Most participants reported a negative change in behavior from others
- Most people preferred emotional support
 - Unless first concussion then preferred emotional support
- Preferred face-to-face support
- Found athletic trainer to provide most support
 - Friends and family next
- Varsity athletes wanted more support from coaches and teammates
 - Club athletes wanted more support from faculty

Long-term Effects on Quality of Life

ladevaia et al (2015)

- Interviews with adolescents (12-16 years) and parents one year post concussion
- 4 major themes
 - Significant effect of symptoms
 - Feelings of frustration
 - Influence on school attendance and activities
 - Nature of interpersonal and team relationships

Topic	Characteristics		
Significant effect of symptoms	Nausea		
, ,	Headaches		
	Dizziness		
	Sensitivity to light		
	Sensitivity to sound		
	Decreased reaction time		
	Balance deficits		
	Blurry vision: seeing stars		
	Symptoms still bother me		
	Trouble sleeping		
	Forgetfulness		
	Hard to concentrate		
	Confusion		
Feelings of frustration	Anger or frustration		
	Was emotional or upset		
	Irritability		
	Anxiety		
	Nervousness		
Influence on school attendance	Academic accommodations		
and activities	Left school early due to symptoms		
	Decrease in grades		
	Wanted to be in school		
Nature of interpersonal and team	Seemed "not right"		
relationships	Change: interpersonal relationship		
	Teammate support		

JAMA Psychiatry | Original Investigation

Risk of Posttraumatic Stress Disorder and Major Depression in Civilian Patients After Mild Traumatic Brain Injury A TRACK-TBI Study

Murray B. Stein, MD, MPH; Sonia Jain, PhD. Joseph T. Glacino, PhD; Harvey Levin, PhD; Sureyya Difonen, PhD; Lindsay D. Nelson, PhD; Mary J. Vassar, RN, MS; David D. Okonkwa, MD, PhD; Ramon Diaz-Arnastia, MD, PhD; Claudia S. Robertson, MD; Pratik Mukherjee, MD, PhD; Michael McCrea, PhD; Christine L. Mac Donald, PhD; John K. Yue, MD; Esther Yuh, MD, PhD; Xiooying Sun, MS; Laura Campbell-Sills, PhD; Nancy Temkin, PhD; Geoffrey T. Manley, MD, PhD; and the TRACK-TB! Investigators

Table 2. Mental Health Outcomes at Follow-up Visitsa,b

Variable	3 mo		6 mo		12 mo	
	mTBI ^c	Orthopedic Trauma	mTBIc	Orthopedic Trauma	mTBIc	Orthopedic Trauma
PCL-5 Total ^d						
No.	842	165	809	148	750	NA
Mean (SE)	17.6 (0.6)	12.2 (1.0)	17.4 (0.6)	13.7 (1.3)	17.0 (0.7)	NA
Probable PTSD (SE), %	18.7 (1.4)	7.6 (2.1)	19.2 (1.4)	9.8 (2.8)	17.2 (1.5)	NA
PHQ-9 Total®		10.		100 110		
No.	867	167	823	150	759	NA
Mean (SE)	5.4 (0.2)	4.2 (0.4)	5.1 (0.2)	4.0 (0.4)	4.7 (0.2)	NA
Probable MDD (SE), %	8.8 (1.0)	3.0 (1.3)	9.0 (1.0)	5.5 (2.4)	6.6 (0.9)	NA

Abbreviations: MDD, major depressive disorder; mTBI, mild traumatic brain injury; NA, not applicable; PCL-5, PTSD Checklist for *DSM-5*; PHQ-9, Patient Health Questionnaire–9; PTSD, posttraumatic stress disorder.

^a All comparisons of mTBI vs orthopedic trauma comparison patient are statistically significant with P values ranging from <.001 to .023, except for comparison of probable MDD at 6 months (P = .26).

b Values shown are raw numbers (sample sizes) and propensity weights-adjusted summaries.

^c Glasgow Coma Scale scores of 13 to 15.

^d PCL-5 total score was calculated as the sum of 20 individual items. Range was O to 8O, and higher score indicates worse symptoms. Total score was prorated if less than 25% of the individual items were missing. Probable PTSD diagnosis was defined as PCL-5 total score 33 or higher.

^e PHQ-9 total score was calculated as the sum of 9 individual items. Range was O-27, and higher score indicates worse symptoms. Probable MDD (moderately severe to severe depression) was defined as PHQ-9 total score 15 or higher. Data for this report are available for the orthopedic trauma comparison patients only through 6 months.

Conclusions

- Prescription of prolonged rest may not be appropriate (and potentially detrimental) in those who have had a concussion
- Active rehabilitation interventions should be explored to speed recovery and possibly reduce potential PCS
 - Novel approaches to test based on symptoms (cognitive and balance)
 - Explore more options for subthreshold exertion
 - Maybe also vestibular and vision symptoms
- Return-to-learn protocols could also alleviate some stress
- All of these concussion management principles could play significant role on mental health of the student-athlete

Thank You!

- If you have any questions please feel free to contact me at:
 - ehall@elon.edu
 - elonbraincare@gmail.com
 - Twitter: @ElonBrainCARE
 - Facebook: Elon Brain Care
 - Instagram: braincareelon
 - http://www.elon.edu/braincare

